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Abstract. The separation of two points on a percolation network is characterised not only 
by the distance between them, but also by the length of a path on the network which 
connects them. The wetting velocity U provides a measure of the lengths of the shortest 
connecting paths on the network above the percolation concentration p E .  Along the easy 
axes, U is expected to vanish as ( p - p , ) '  near pc ,  while ( I  - U )  is expected to vary as 
( p d  - p ) "  near the directed percolation concentration pd. The exponent 8 is related to an 
exponent 6 which characterises the shortest paths precisely at p,; and which has recently 
been determined numerically. The wetting velocity is calculated analytically on a randomly 
diluted Bethe lattice, and the values 8 = 4 and 8' = 1 (with logarithmic corrections) are 
found. The direction dependence of U is also investigated. 

The percolation problem (Broadbent and Hammersley 1957) is concerned with the 
nature of connections in a lattice in which a randomly chosen subset of elements (sites 
or bonds) has been removed. For instance, in site percolation, one asks for the 
probability that two sites i and j are connected by at least one unbroken chain of sites. 
But besides asking whether connections exist, it is also of interest to ask how tortuous 
they are. One is thus led to consider the shortest (possibly non-unique) path between 
site i and site j - o n e  on which a walker must traverse the fewest possible sites in order 
to go from i to j ,  if these sites are connected in a particular realisation of the lattice. 
There are several ways of looking at the problem. The length I, of the shortest path 
is equal to the time taken by a fluid injected at site i to reach site j, assuming that the 
fluid front moves outward and wets neighbouring accessible sites every second. The 
motion of the fluid front defines the wetting velocity U (Dhar 1982) whose value in a 
particular direction provides a measure of the shortest path length in that direction. 
The problem is an example of first passage percolation (Hammersley and Welsh 1965), 
with a particular distribution of transmission times. The shortest path length I, is 
sometimes also referred to as the chemical distance between sites i and j, and its 
behaviour exactly at the critical percolation concentration has been studied by series 
and Monte Carlo methods (Alexandrowicz 1980, Pike and Stanley 1981, Hong and 
Stanley 1983, Puech and Rammal 1983, Herrmann et a1 1984, Havlin and Nossal 1984). 

Given two sites on a hypercubic lattice separated by a distance R,, the wetting 
velocity U is defined as 

v = R, / l ,  

where 1, is the length of the shortest connecting path between i and'j. We take R, to 
be the sum of the Cartesian separations /xi - xi[ + (y i  -yjl + . . . , rather than the Euclidean 
distance between i and j ,  so that R, s I,, with the equality holding for the smallest 
possible chemical separation between two fixed sites i and j .  The value of v ranges 
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from zero (which characterises extremely tortuous paths) to one (for the shortest, most 
direct paths). In general, U is quite anisotropic (Dhar 1982). It is largest along the 
easy directions (any of the body diagonals of the hypercubic lattice), along which its 
value varies continuously from 0 to 1 as p increases from the percolation concentration 
pc to the directed percolation concentration Pd. Of particular interest is the singular 
fashion in which the limits U = 0 and U = 1 are reached. We expect that along the easy 
direction 

u-(P-Pc)e asp+pc,  (2) 

would hold. Calculations on the Bethe lattice (described below) support this expecta- 
tion with 8 = & and 8’ = 1 with logarithmic corrections, but before we turn to these, we 
give an argument which relates 6 to an exponent i which governs the relationship 
between lo and R ,  exactly at pc (Havlin and Nossal 1984): 

( R ; ) -  1;’. (4) 

In order to relate (2) and (4) above, consider the infinite percolation cluster with p 
just above p c .  On length scales much smaller than the correlation length 6, its structure 
is expected to be similar to that of the infinite cluster at p c ,  whereas it is expected to 
be homogeneous on length scales larger than 6. Consistent with this picture, one 
expects the shortest path length between two sites a distance nt apart ( n  >> 1)  to be 
roughly n times the shortest path length A(() between two sites a distance 5 apart. 
But A$,$) is given, on using equation (4), by A(,$)-[”’ and ( itself diverges as 
( p  -pa)-”. The wetting velocity U, which measures the ratio of the separation to the 
shoptest path length, thus follows equation (2) with 

e = v(i/fi- 1). ( 5 )  

This relationship can be checked on the Bethe lattice, on which v = f. The value 0 = & 
we find below is consistent with i = (Havlin and Nossal 1984). 

We now turn to the determination of the shortest paths in percolation on the Bethe 
lattice. The latter is part of an endlessly branching structure with no loops. The 
customary percolation problem has been solved earlier on this pseudo-lattice (Fisher 
and Essam 1961), as have the related conductivity and diffusion problems (Stinchcombe 
1974, Straley 1980). The solutions obtained have proved to be quite instructive, and 
the critical exponents obtained thereby provided reference points for expansions around 
the upper critical dimension (Toulouse 1974). However, before considering the effects 
of random dilution, let us define separations between sites on the Bethe lattice. 

Consider an undiluted Bethe lattice with coordination number 2m, where m is an 
integer. Each link is assigned a type and an arrow. There are m types a , ,  a z . .  . a, 
(the type is like a coordinate axis label; see below). At every site, there are two links 
of type f f k  ( k  = 1 , .  . . m), one with an arrow pointing into the site and the other with 
the arrow pointing away from it. A geometrical interpretation of the assignment of 
types and arrows is as follows. Imagine the Bethe lattice embedded in an infinite- 
dimensional space which is spanned by unit vectors Z l ,  Z 2 . .  . ;,, . . . &,. A link 
of type f f k  (1  d k d  m) is one which has a component i l  along &, but vanishing 
components along the (m - 1)  directions 2, ( I  = 1 . . . m ;  1 # k). The arrow denotes the 
positive sense along the kth axis. The components along the remaining directions 
from (m + 1) to cc are chosen so that every link is orthogonal to every other, but these 
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components need not be specified as we will confine our attention to the m-dimensional 
subspace spanned by i t ,  & .  . . i,,,. For k between 1 and m, the kth component of the 
displacement between sites i and j is 

rk,=Csf: 
n 

where the sum runs over all steps of the unique self-avoiding walk (SAW) from site i 
to j ,  and s: is 1(-1) if the nth step is along (against) the direction of the arrow on a 
link of type ak, while it vanishes if the link is not of type k. It suffices to confine our 
attention to the ‘positive’ sector, in which every displacement rk, is non-negative, as 
the behaviour we find in this sector occurs, by symmetry, in each of the other (2m - 1 )  
sectors as well. In the positive sector, the sum of displacements rt ,  serves as a measure 
of the separation R, of two points. We can write R, in terms of pseudospins s, = rtl 
associated with links (we will make contact with an Ising model below; see also White 
and Barma (1984)). Take s, = 1(-1) if the nth link in the SAW from i t o j  is traversed 
along (against) the arrow on that link. Then we have 

R, =c S, 
I) 

while the length of the connecting path between i and j 

(7) 

n 

is just the number of steps of the SAW connecting the two points. 

of the sites. It is known (Fisher and Essam 1961) that if p exceeds a critical value 
Now consider randomly diluting the Bethe lattice by removing a fraction (1  - p )  

p c =  1/(2m - 1)  (9) 

then there is a finite probability that there are connected paths leading from a given 
site 0 to infinity. We can see this as follows. The end point of each N-step SAW with 
origin 0 and executed on the undiluted Bethe lattice identifies a distinct point on the 
lattice; the number of such points is (2m - l)N. On the diluted lattice, the probability 
that the end point of each SAW is connected to 0 is p N + ’ .  Hence the expectation value 
CN of the number of end points reached by N-step SAWS on the diluted lattice is 
p[p(2m - 1)lN. We see that C, vanishes for p < p c  whereas it diverges for p > p c  on 
the Bethe lattice. Similarly, the expectation value DN of end points reached through 
directed SAWS (in which every link is traversed along the arrow) is p ( m p ) ?  Recall 
that each directed SAW is characterised by U = 1. We see that Dm vanishes if p < pd with 

P d  = (10) 

whereas it diverges for p > pd. In equations (9) and ( I O ) ,  p c  and p d  are, respectively, 
the critical percolation concentration and the critical directed percolation concentration 
on the Bethe lattice. 

Just as pd is the threshold concentration for the occurrence of an infinite path with 
U = 1, we can ask for the corresponding threshold p ( u )  for the occurrence of infinite 
paths with velocity U. Following the arguments in the previous paragraph, the expected 
number of N-step SAWS characterised by a velocity U is 

C N ( U )  = P N Q N ( U )  ( 1 1 )  
where Q N ( v )  is the number of N-step SAWS on the undiluted lattice which lead to a 
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displacement R, = UN. It is given by 

where T(s,, s ,+~)  is the number of alternatives available at the (n + 1)th step of the 
SAW, for specified values of s, and s ,+~.  Since the nth step blocks one of the options 
for the ( n  + 1)th step, we have 

T(sn, s n + l ) = m  ifs,+I = s,, 

= m - 1  ifs,,+I = -s,. 

Identifying T(s,, s,+’) with exp(Ks,s,+,), we see that Q N ( u )  is the partition function 
of a I D  Ising model in an ensemble in which the magnetisation U is held fixed. The 
corresponding free energy is 

a ( u )  = N - ’  In &(U) (14) 

but for calculational purposes it is more convenient to specify the magnetic field rather 
than to fix U. The resulting free energy 

is related to a ( u )  by a Legendre transform if N is large. We have 

a ( u ) = f ( h ) - u h  

with 

v =af/ah. 

The calculation of f ( h )  is carried out straightforwardly on introducing an h-dependent 
transfer matrix (see equation (A8) of White and Barma (1984)). Its largest eigenvalue 

A ( h )  = m cosh h + ( m 2  cosh2 h -2m + 1)’’’ (18) 

determines f ( h )  for large N, 

f( h ) = In A ( h ). 

The condition for criticality is that C,( U )  should neither vanish nor diverge as N + a. 
Using (1 l) ,  (14), (16) and (19), the condition can be expressed as 

p = ehu/A(h). (20) 

Using equation (17) we see that the critical locus is found by eliminating h between 
(20) and 

m sinh h 
(m’ cosh2 h -2m+ 1)’”. 

U =  

In the limit h +a, we have U = 1, and, as expected, the critical value of p is Pd. 
On the other hand, when h + 0, we see that U + 0, and the corresponding critical value 
of p is the undirected percolation concentration p c .  The wetting velocity as a function 
of p is shown by the bold curve in figure 1. Consider the approach to U = 0 and v = 1. 
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Figure 1. The wetting velocity U( I$) is plotted as a function of the site occupation probability 
p on a Bethe lattice with coordination number 4(m = 2). Each curve corresponds to a 
different direction, and is labelled by the angle 4 between that direction and the easy axis 
(4 =O"). 

As the critical concentration pc is approached from above, the wetting velocity vanishes 
as 

On the other hand, near the directed percolation threshold, we find 

1 - U = 26p/[-ln(2Sp)l, SP + 0, (23) 

with 8p E (Pd-P)/Pd. From (22) and (23) we read off 6 = f and 6'= 1 (with logarithmic 
corrections) for the Bethe lattice. 

In the discussion above, we did not specify the components of the separation R,. 
However, since we calculated the smallest value of p beyond which paths with a certain 
velocity U proliferate, we would expect the critical paths to be oriented predominantly 
along the m-dimensional body diagonal (1  1 . . . ), as such paths are most numerous. 
We now turn to an investigation of the critical value of p if we insist not only on a 
particular value of U, but also that the paths be oriented in a direction other than the 
body diagonal. We will study this feature on a Bethe lattice with m = 2. To this end, 
let us first ask for the number QN( vi, u2) of N-step SAWS on the undiluted Bethe lattice 
which lead to a displacement with components $ N ( q  + u2) and f N (  u1 - u2) along the 
two Cartesian axes. Without loss of generality, we require that uI 3 u2 3 0. The 
displacement is characterised by an angle 4 neasured from the (1 1) direction, where 
4 is given by 

tan 4 = u2/ U,. 

expENf(h1, h ) I =  C Q d ~ l ,  u2) exp[N(vlhl+v2h2)I 

(24) 

It is expedient to introduce fields h ,  and h2 and to calculate 

( 2 5 )  
01.U2 

rather than Q N ( u i ,  u2) directly. The sum in (25) can be evaluated on rewriting Nu, 



L282 Letter to the Editor 

and Nu2 as sums over link variables and then introducing a transfer matrix. Explicitly, 
we have 

where s, = 1(-1) if the nth step of the SAW has a positive (negative) component along 
the 11  direction, while tn = 1( -1 )  if the nth step has a positive (negative) component 
along the 17 direction. We can rewrite (25) as 

The transfer matrix is given by 

X 
x - l y - l  y - l  yl 1 1: pi xy-l  0 

y x-l 0 x - l y  

with 

x = exp(h) ,  y = exp(h2). (29) 

A(h1, h2)=2cosh hl cosh h2+(4C0Sh2 h1 cosh2h2-3)1'2 (30) 

The largest eigenvalue of f is 

and in analogy to equation (20), the equation of the critical curve on the diluted lattice 
is given by 

P = exp( h l  + h2 u2)/A (hI,h2)  (31) 
with 

u1 = a In A ( h ,  , h2) /dhl  

- 2 sinh h,  cosh h2 - 
(4 cosh2 h ,  cosh2 h ~ - 3 ) " ~  

and u2 given by a similar equation with h i  and h2 interchanged. Equations (24), (31) 
and (32) determine the wetting velocity U(+)= U ,  as a function of 4 and p ,  on 
eliminating hl  and h l .  

Let us consider some limits. When h2 = 0, we have 4 = 0, which corresponds to 
the 11  direction. In this case we recover, as expected, the earlier results (18)-(21), 
with m set equal to 2 in those equations. The limit h ,  = h2 corresponds to 4 = 45", the 
orientation of the coordinate axis 10. It is hardest to form connections in this direction, 
and a value 445") = 1 for the wetting velocity is achieved only in the limit of the 
undiluted lattice, p = 1. Figure 1 shows the wetting velocity U(+) as a function of p 
for 4 = 0", 30" and 45". The intercept of a curve (labelled by a particular 4) with the 
U = 1 axis picks out the smallest value p =pint beyond which infinitely long directed 
paths occur in that direction; thus the intercepts follow the dependence of the directed 
percolation cone angle on p (Dhar 1982). For small 4, we find 

pint -; = 442. (33) 
For fixed 4, the approach of the curve to the limits U = 0 and U = 1 is similar to the 
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approach described by equations (22) and (23). In particular, the exponents 8 = f and 
8’= 1 (with log corrections) do not change. The & independence of f3 is not really 
surprising as at, and close to, the percolation threshold, we would expect the wetting 
velocity to be isotropic, provided the Euclidean definition of distance is used. Our 
definition of o in terms of the Cartesian separation introduces a &-dependent amplitude, 
but leaves the exponent 8 unaltered. 

I thank Dr D Dhar for very helpful discussions and Dr R Ramaswamy for a critical 
reading of the manuscript. 

Note added in proal: After this letter was submitted, I learnt of related work by Ritzenberg and Cohen 
(1984). These authors propose a scaling for m for the behaviour of the shortest path length and give an 
argument not unlike that presented here, leading to the relation ( 5 )  between critical exponents. 
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